
William Stallings
Computer Organization
and Architecture
8th Edition

Chapter 2
Top Level View of Computer
Function and Interconnection

Program Concept
• Hardwired systems are inflexible
• General purpose hardware can do

different tasks, given correct control
signals

• Instead of re-wiring, supply a new set of
control signals

What is a program?
• A sequence of steps
• For each step, an arithmetic or logical

operation is done
• For each operation, a different set of

control signals is needed

Function of Control Unit
• For each operation a unique code is

provided
—e.g. ADD, MOVE

• A hardware segment accepts the code and
issues the control signals

• We have a computer!

Components
• The Control Unit and the Arithmetic and

Logic Unit constitute the Central
Processing Unit

• Data and instructions need to get into the
system and results out
—Input/output

• Temporary storage of code and results is
needed
—Main memory

Computer Components:
Top Level View

The CPU exchanges data with memory. It
uses of 2 internal (CPU) registers: a MAR,
which specifies the address in memory for
the next read or write, and a MBR, which
contains the data to be written into memory
or receives the data read from memory.

an I/OAR specifies a particular I/O device.
An I/OBR register is used for the exchange
of data between an I/O module and the CPU.

A memory module consists of a set of
locations, defined by sequentially numbered
addresses. Each location contains a binary
number that can be interpreted as either an
instruction or data. An I/O module transfers
data from external devices to CPU and
memory, and vice versa. It contains internal
buffers for temporarily holding these data
until they can be sent on.

Instruction Cycle
• Two steps:

—Fetch
—Execute

Fetch Cycle
• Program Counter (PC) holds address of

next instruction to fetch (to be executed)
• Processor fetches instruction from

memory location pointed to by PC
• Increment PC

—Unless told otherwise
• Instruction loaded into Instruction

Register (IR)
• Processor interprets instruction and

performs required actions (decode)

Execute Cycle
• Processor-memory(data movt instructions

—data transfer between CPU and main memory
• Processor I/O

—Data transfer between CPU and I/O module
• Data processing

—Some arithmetic or logical operation on data
• Control

—Alteration of sequence of operations
—e.g. jump

• Combination of above

Example of Program Execution
1. The PC contains 300, the address of the first

instruction. This instruction (1940 in hex) is
loaded into the instruction register IR and the
PC is incremented. This process involves the
use of MAR and MBR.

2. The first 4 bits (first hex digit) in the IR
indicate that the AC is to be loaded. The
remaining 12 bits (three hex digits) specify the
address (940) from which data are to be
loaded.

3. The next instruction (5941) is fetched from
location 301 and the PC is incremented.

4. The old contents of the AC and the contents
of location 941 are added and the result is
stored in the AC.

5. The next instruction (2941) is fetched from
location 302 and the PC is incremented.

6. The contents of the AC are stored in location
941.

Instruction Format

• Opcode field
—Part of the code that describes the operation
•Operand field(s)
—Part of the code that describe the data to operate
on
•Mode field
—The way opcode understands operand field

Instruction Cycle State Diagram

Determine address of
the instruction to be
executed

Read instruction from its
memory loaction into the
processor

Analyse instruction to
determine type of
operation to be
performed

Fetch operand from
memory or read it from I/O

Perform operation
indicated in the
instruction

Write result into memory
or read it from I/O

Interrupts
• Mechanism by which other modules (e.g.

I/O) may interrupt normal sequence of
processing

• Program
—e.g. overflow, division by zero

• Timer
—Generated by internal processor timer
—Used in pre-emptive multi-tasking

• I/O
—from I/O controller

• Hardware failure
—e.g. memory parity error

Program Flow Control

Code
segments 1,
2, and 3
refer to
sequences
of
instructions
that do not
involve I/O

Interrupt Cycle
• Added to instruction cycle
• Processor checks for interrupt

—Indicated by an interrupt signal
• If no interrupt, fetch next instruction
• If interrupt pending:

—Suspend execution of current program
—Save context
—Set PC to start address of interrupt handler

routine
—Process interrupt
—Restore context and continue interrupted

program

Transfer of Control via Interrupts
From the point of view of the user
program, an interrupt is just that:
an interruption of the normal
sequence of execution. When the
interrupt processing is completed,
execution resumes.

Thus, the user program does not
have to contain any special code to
accommodate interrupts; the
processor and the operating
system are responsible for
suspending the user program and
then resuming it at the same point.

Instruction Cycle with Interrupts

In the IC, processor checks to see if any interrupt has occurred
by the presence of interrupt signal. If the interrupt is pending,
processor does the following:
-It suspend execution of the current program being executed
and save the address of the next instruction to be executed
-It sets the program counter to the start of address of an
interrupt handler routine
Interrupt handler is a part of operating system
Extra instruction must be executed

To accommodate interrupts, an interrupt cycle is added to the instruction cycle

Program Timing Short I/O Wait
Assume that the time required for
the I/O operation is relatively short:
less than the time to complete the
execution of instructions between
write operations in the user
program.

The more typical case, especially
for a slow device such as a printer,
is that the I/O operation will take
much more time than executing a
sequence of user instructions.

The result is that the user program
is hung up at that point.

Program Timing Long I/O Wait

When the preceding I/O operation is
completed, this new WRITE call may
be processed, and a new I/O operation
may be started.

The left panel shows the timing for
this situation with and without the use
of interrupts.

We can see that there is still a gain in
efficiency because part of the time
during which the I/O operation is
underway overlaps with the execution
of user instructions.

Instruction Cycle (with Interrupts) -
State Diagram

Multiple Interrupts
• Disable interrupts

—Processor will ignore further interrupts whilst
processing one interrupt

—Interrupts remain pending and are checked
after first interrupt has been processed

—Interrupts handled in sequence as they occur
• Define priorities

—Low priority interrupts can be interrupted by
higher priority interrupts

—When higher priority interrupt has been
processed, processor returns to previous
interrupt

Multiple Interrupts - Sequential

It does not take into account relative priority
or time critical needs. Ex: when input data
arrives from the communication line, it may
need to be absorbed rapidly to make room
for more input. If the first batch of input has
not been processed before the second batch
arrive, data may be lost

Multiple Interrupts – Nested

We define priorities for interrupts and to
allow an interrupt of higher priority to
cause a lower priority interrupt handler to
be itself interrupted

Time Sequence of Multiple Interrupts

At t=10 printer interrupt occurs,
user information is placed on the
system stack and execution
continues at the printer ISR

At t=15, communication
interrupt occurs, because the CL
has higher priority than the
printer, the interrupt is honored.
Printer ISR is interrupted and
execution is continued at the
communication ISR

Connecting

• All the units must be connected
• Different type of connection for different

type of unit
—Memory
—Input/Output
—CPU

	William Stallings �Computer Organization �and Architecture�8th Edition
	Program Concept
	What is a program?
	Function of Control Unit
	Components
	Computer Components:�Top Level View
	Instruction Cycle
	Fetch Cycle
	Execute Cycle
	Example of Program Execution
	Slide Number 11
	Instruction Cycle State Diagram
	Interrupts
	Program Flow Control
	Interrupt Cycle
	Transfer of Control via Interrupts
	Instruction Cycle with Interrupts
	Program Timing Short I/O Wait
	Program Timing Long I/O Wait
	Instruction Cycle (with Interrupts) - State Diagram
	Multiple Interrupts
	Multiple Interrupts - Sequential
	Multiple Interrupts – Nested
	Time Sequence of Multiple Interrupts
	Connecting

